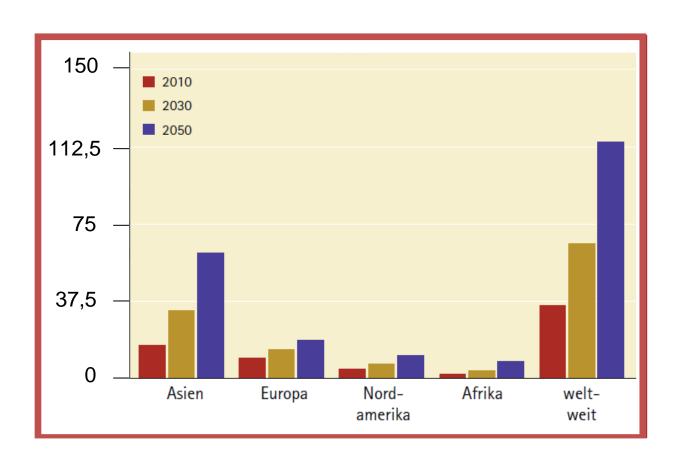


Prävention und Therapien dementieller Erkrankungen – Was hat sich bewährt, was gibt es Neues?


Agnes Flöel Klinik und Poliklinik für Neurologie

Prognostizierte Anzahl von Menschen mit Demenz in Mill.

DEMENTIA A PUBLIC HEALTH PRIORITY

Risikofaktoren und Prävention

Prävention

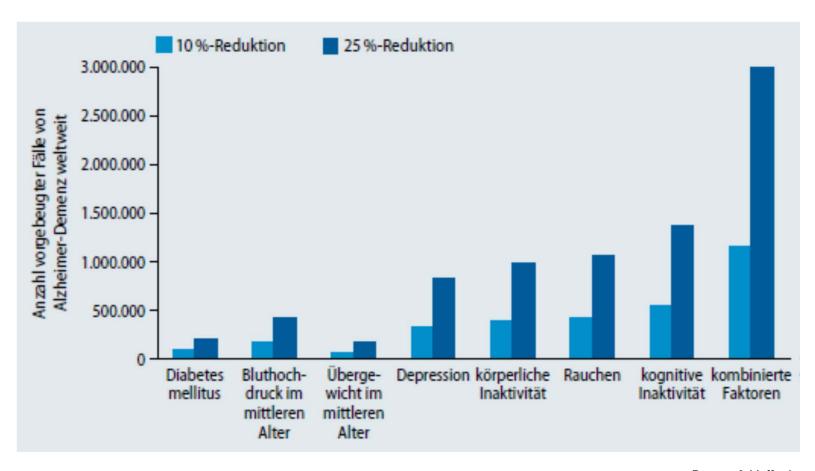
- 1. Vaskuläre Risikofaktoren
- 2. Körperliche Aktivität
- 3. Kognitives Training, kognitive Stimulation

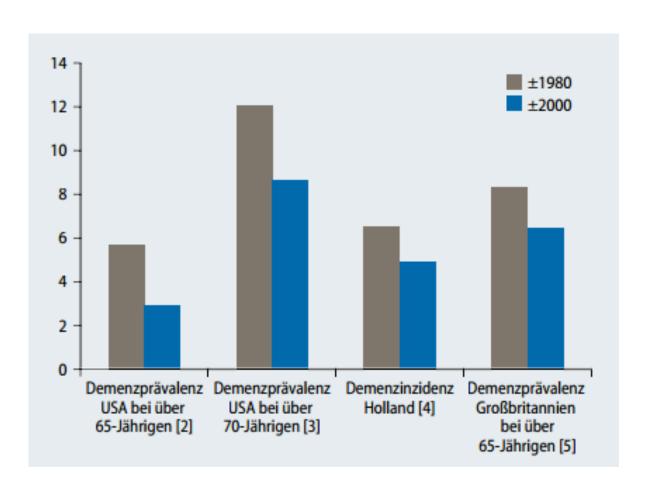
Prävention

- 1. Vaskuläre u. andere behandelbare Risikofaktoren
- 2. Körperliche Aktivität
- 3. Kognitives Training, kognitive Stimulation

Risikofaktoren für Demenzentwicklung

- Lebensalter
- Familiäre Belastung (genetische Faktoren, insbesondere ApoE ε4)
- Gefäßrisikofaktoren
 - Diabetes mellitus
 - Arterielle Hypertonie
 - Cholesterin-Stoffwechsel
 - Niereninsuffizienz
 - Nikotinkonsum
 - Alkohol (J-shaped)


- Depression
- Schädel-Hirn-Trauma
- geringe Schulbildung
- geistige Inaktivität
- Bewegungsmangel
- Hoher Fettverzehr, Übergewicht

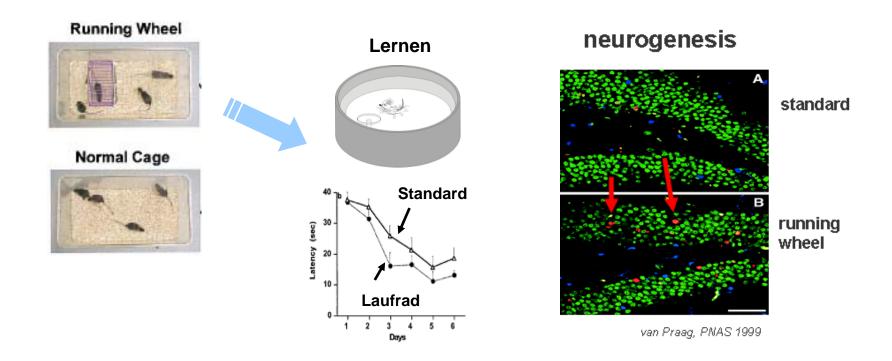

Risikofaktoren für Demenzentwicklung und Auswirkung ihrer Reduktion um 10% bzw. 25%

Tatsächliche Inzidenz beziehungsweise Prävalenz der Demenz im Jahr 2000 und die Schätzungen 20 Jahre zuvor

"Die Behandlung vaskulärer Risikofaktoren ist derzeit der effektivste Weg, um kognitiven Abbau zu verhindern"

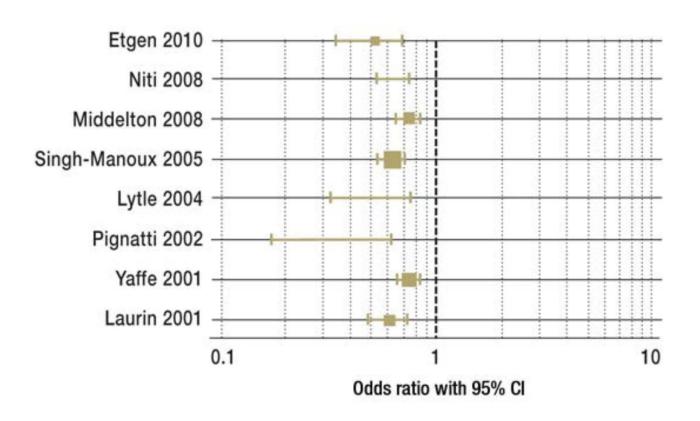
Healthy People 2010:

Entscheidend für eine nationale Gesundheitsverbesserung ist die Veränderung des Gesundheitsverhaltens


Prävention

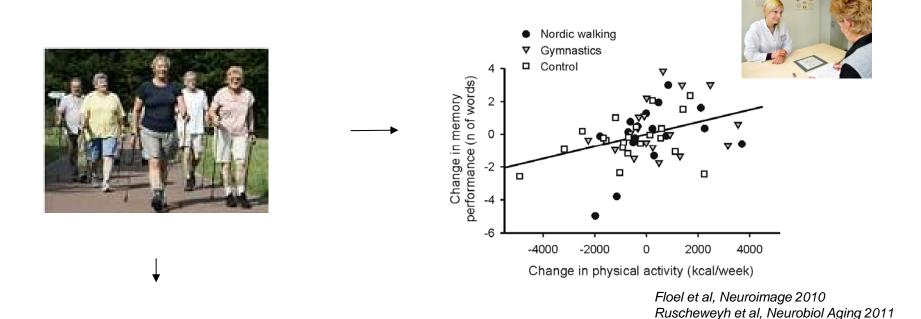
- 1. Vaskuläre u. andere behandelbare Risikofaktoren
- 2. Körperliche Aktivität
- 3. Kognitives Training, kognitive Stimulation

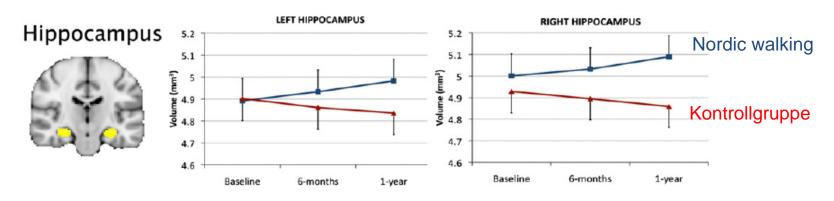
Körperliche Aktivität - Tierexperimentell



→ Verzögerung von Alzheimer-Pathologie (Patel et al, Neurobiol Aging 2005)

Körperliche Aktivität - Epidemiologie





Etgen et al, Dt. Ärzteblatt Int 2011

Körperliche Aktivität – Interventionsstudien gesunde ältere Menschen

Erickson et al, PNAS 2011

Körperliche Aktivität – mögliche Mechanismen; Leitlinien

KÖRPERLICHE AKTIVITÄT

Molekulare Ebene

- ↑ Neurotrophine (BDNF, IGF, NGF, G-CSF, VEGF), Insulinsensitivität, Antioxidative Enzyme, ROS-Homöostase, Mitochondrienfunktion, Fettstoffwechsel
 - ◆ Entzündungsfaktoren, ß-Amyloid Ablagerung, Blutdruck

Zelluläre Ebene

↑ Synaptogenese, Neurogenese, Gliagenese, Angiogenese

Systemische Ebene

- ↑ Blutvolumen und − fluss, Volumen + Integrität der grauen und weißen Substanz (temporaler, frontaler und partietaler Cortex), Konnektivität und Aktivität
 - ↑ Kognition + Lebensqualität + Alltagsfähigkeiten

Köbe & Flöel, Handbuch Alzheimer Erkrankung; Hrsg: Jessen F. De Gruyter, 2017

Empfehlung zur Prävention und Intervention:

"Empfehlungsgrad B" (S3 Leitlinien Demenz 2016)

- ✓ Regelmäßige Bewegung
- ✓ Abwechslungsreiche Aktivitäten jeglicher Intensität
- ✓ In jedem Lebensalter und im präsymptomatischen sowie symptomatischen Stadium
- ✓ Berücksichtigung des Fitnesszustandes und des Verletzungsrisikos

Aber: Bisher keine interventionelle Studie zu "Übergang MCI in AD"

Prävention

- 1. Vaskuläre u. andere behandelbare Risikofaktoren
- 2. Körperliche Aktivität
- 3. Kognitives Training, kognitive Stimulation

Kognitives Training, kognitive Stimulation

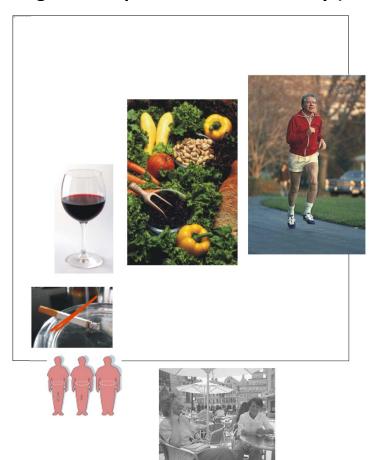
Gesunde ältere Probanden

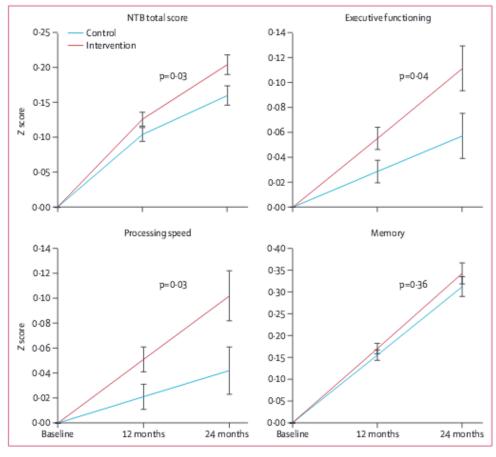
Effect of training and number of training sessions attended on risk of dementia

	No dementia (N = 2525)	Dementia (N = 260)	Hazard ratio (95% CI)	P value
Training group	o, N (%)			
Control	620 (24.6)	75 (28.8)	1.00 (reference)	
Memory	639 (25.3)	63 (24.2)	0.79 (0.57-1.11)	.177
Reasoning	627 (24.8)	63 (24.2)	0.79 (0.56-1.10)	.163
Speed	639 (25.3)	59 (22.7)	0.71 (0.50-0.998)	.049
Number of tra	ining sessions, N	M (SD)*		
Memory	11.9 (5.2)	11.6 (5.7)	0.95 (0.90-1.00)	.038
Reasoning	12.0 (5.0)	12.9 (4.1)	0.96 (0.91-1.02)	.240
Speed	12.1 (4.9)	10.8 (4.8)	0.90 (0.85-0.95)	<.001

Kognitives Training, kognitive Stimulation

Stadium MCI


	Expe	erimen	tal	C	ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Mahncke 2006	0.7	0.44	50	0.2	0.39	54	27.7%	1.20 [0.78, 1.62]	
Buschkuehl 2008	0.11	1.31	32	-0.5	1.34	32	25.4%	0.45 [-0.04, 0.95]	
Stern 2011	0.81	2.27	17	0.27	2.6	19	20.8%	0.22 [-0.44, 0.87]	
Miller 2013	6.35	8.76	36	3.03	9.04	33	26.0%	0.37 [-0.11, 0.85]	+•
Total (95% CI)			135			138	100.0%	0.59 [0.13, 1.05]	•
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.16; Chi ² = 10.15, df = 3 (P = 0.02); P = 70%					-2 -1 0 1 2			
Test for overall effect Z = 2.49 (P = 0.01)						Favours control Favours experimental			


Fig 6. Forest plot of the long-term effect of computer-based cognitive programs in memory performance.

Shao et al, PLOS One 2015

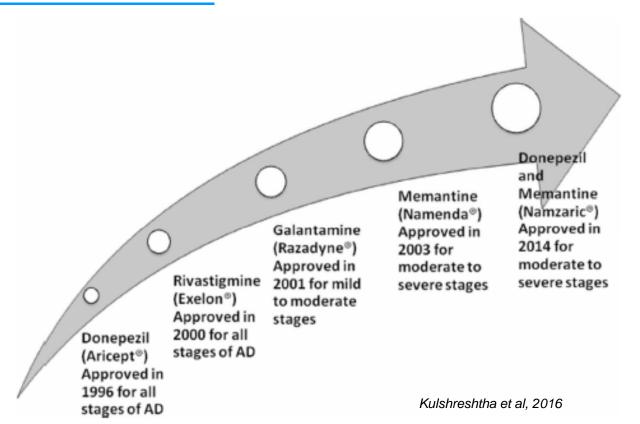
The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)

Ngandu et al, Lancet 2015

Therapieansätze - kausal und symptomatisch

Therapieansätze

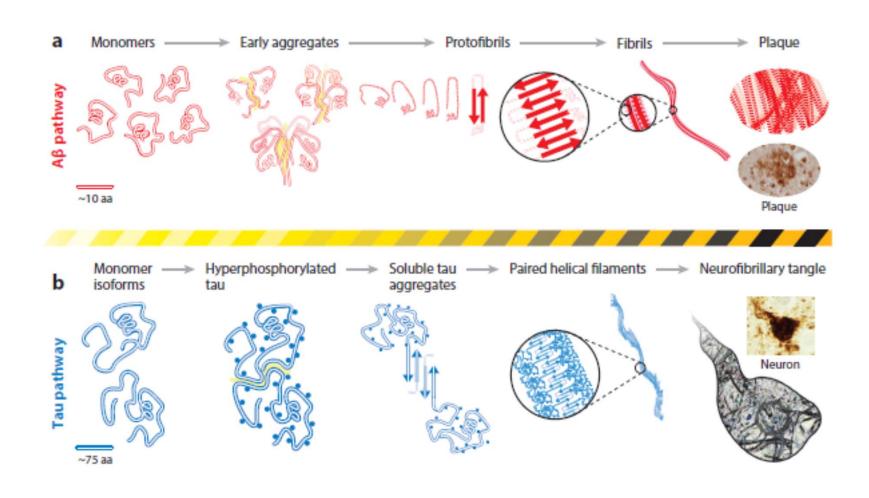
- 1. Zugelassene Medikamente
- 2. Anti-Amyloid, Anti-Tau Strategien
- 3. Nicht-medikamentöse Substanzen?
- 4. Symptomatische Therapien


Therapieansätze

- 1. Zugelassene Medikamente
- 2. Anti-Amyloid, Anti-Tau Strategien
- 3. Nicht-medikamentöse Substanzen?
- 4. Symptomatische Therapien

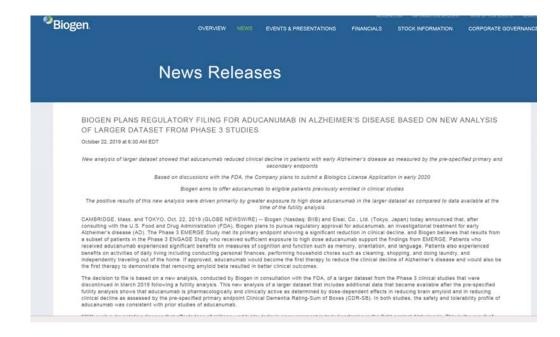
Zugelassene Medikamente

- Donepezil, Rivastigmin, Galantamin bei leichter bis mittelschwerer Alzheimer-Demenz
- Memantin bei mittel-bis schwerer Alzheimer-Demenz
- Nach S3 Leitlinien Demenz sind Kombinationen, Fortführung Donepezil im schweren Stadium, Gabe bei gemischter Demenz, bei MCI uvm im Einzelfall möglich


Therapieansätze

- 1. Zugelassene Medikamente
- 2. Anti-Amyloid, Anti-Tau Strategien
- 3. Nicht-medikamentöse Substanzen?
- 4. Symptomatische Therapien

Pathologische Kaskaden der Alzheimer-Krankheit


Kosten AD – Medikament?

Präklinische Entwicklung bis zur Zulassung eines Medikamentes mit der Indikation "Alzheimer's Disease"

- 9 Jahre
- **5,7 Mill. US-Dollar** (Cummings et al, Alzheimer's & Dementia 2016) Seit 2003 keine wesentlichen Zulassungen erfolgt; Rückzug oder Reduktion des Engagements bei vielen Firmen

Möglicherweise neue Entwicklungen bei Aducanumab (Biogen Idec)

Therapieansätze

- 1. Zugelassene Medikamente
- 2. Anti-Amyloid, Anti-Tau Strategien
- 3. Nicht-medikamentöse Substanzen?
- 4. Symptomatische Therapien

"Nicht-medikamentöse" Interventionen mit "Naturstoffen" (botanicals, phytochemicals, formulations)

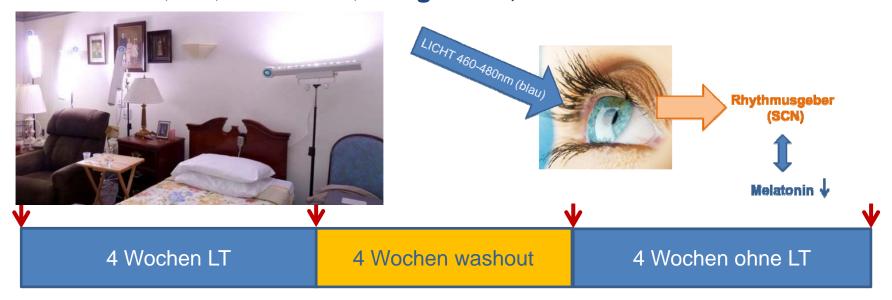
Labse 1				
And All ambeles of an	and the sect man	Office Suppose	AND REAL PROPERTY.	

Source plant (parts,crude or semi-purified extracts)	Family	In-vitro/in-vivo models/human trial	Mode of action	References
Allium sothrum L., aged garlic extract (AGE)	Amaryflidaceae	Transgenic Swedish double mutant mouse AD model Tg 2576	†Anti-amyloidogenic, † anti-inflammatory, † anti-tangle	Chauhan, 2006
		Aβ (25–35)-Induced PCI2 cells	LROS, LCaspase-3, LDNA fragmentation, LPARP cleavage	Pengetal, 2002ab
Angelics gigss Nakai, INM-176 (an ethanolic extract)	Aplaceae	Scopolamine- or Aβ (1-42)-induced mice	†Memory, † anti-amnesic, † acetylcholine sterase (AChE) inhibitory activity	Park et al., 2012ab,c
Angelics gigss, ethanolic extract	Apiacea e	Aβ (1-42)-induced mice	¿Memory impairment	Yan et al., 2004
Angelica sinensis (Oliv.) Diels, roots extracted in methanol	Apiaceae	Aβ (1-42)-induced cultured contical neurons	LGSK-3β, †PI3K, †phosphorylation of CREB, Ltau protein hyperphosphorylation	Zhang et al., 2011
Artemisia asiatisa Nakai ex Pamp, alkaloid from chlosoform fraction of methanolic extract	Asterace ae	AChE inhibition; Aβ (25–35)-induced rat PC12 cells	†AChE inhibitory activity, μΑβ toxicity.	Heo et al., 2000
Racopa mounied (L) Wettst, alcoholic extract	Plantagina ceae	Male Wistar rats AD model induced by ethylcholine aziridinium ion (AF64A)	(Cognitive function,) cholinergic neuron	Uabundit et al. 2010
Colorus cojon (L.) Huth, stilbenes containing extract-fraction	Fabace ae	Aβ (25-35)-induced mice	†ChAT, † antioxidation	Ruan et al., 2009
Charmaecyporis obtust (Siebold & Zucc.) Endl., essential oil	Cupressace ae	Aβ (1–40)-induced rats	Behavioral deficits, † AChE inhibitory activity, † memory	Bae et al., 2012ab
Crocus sativus L. (saffron)	Iridace ae	Patients with mild-to-moderate AD	†Efficacious in mild to moderate AD	Akhondzade et al., 2010a
		Patients with mild-to-moderate AD	†Efficacious in AD, † cognitive function	Akhondzade et al., 2010b
Cornellia sinerais (L.) Kuntze, green tea catechin ()-epiga liocatechin-3-gallate (EGCG)	Theaceae	TgCRND8 (Tg) mice	†Brain health, ‡AD progression	Waller et al
() 4		Aβ (1-42)-injected mouse, PS2 mutant AD mice	†Memory, † α-secretase, ↓β- and y-secretase, ↓Λβ	Lee et al., 2009
Camella sineusis (L.) Kuntze, green te a extract	Theaceae	AB (25–35)-induced PC12 cell	IAB toxicity, LROS, Lcaspase-3, L8-oxodG, Lp53, LBax, 18ci-2, LNF-i8, LERK, Lp38 MAPK	Lee et al., 2005ab
Dendrobium nobile Lindl., alkaloids enriched extract	Orchidaceae	Lipopolysaccharide (LPS) induced rat brain	¿Tau protein hyperphosphorylation and ¿ apoptosis	Yang et al., 2014ab
Giskgo biloba L, special extract BGb 761 and donepezil	Ginkgpaceae	AD patients with mild to moderate dementia	(Efficacious against dementia	Mazza et al. 2006
Ginkgo biloba L extract (RGb 761)	Ginkgpaceae	Aβ (25-35), Aβ (1-40) and Aβ (1-42) induced hippocampal primary cultured cells	(Oxidative stress, Lapoptosis, Ltoxicity	Bastianetto al, 2000
ECB761, hyperbanc oxygen (HBO), and the combination HBO and ECB761	Ginkgnaceae	Aβ (25-35)-induced rats	(Toxicity, Loxidative stress	Than et al., 2012
ECB761 and HBO	Ginkgnaceae	Aβ(25–35)-induced rats	¡Toxicity, ¡oxidative stress, ; mitochondria-mediated apoptosis signaling	Tian et al., 2013
Magnolia officinalis Rehder & E.H. Wilson, 4-O-methylhonoldol (4-O-MH) (an extract)	Magnoliaceae	Aβ (1-42)-induced mice	†Memory, † antioxidation, ¿glutathione, ¿p38 MAPK	Lee et al., 2011
		Tg2576 transgenic mice model of AD	†M emory, ↓β-secretase activity, † and-inflammatory, ↓ oxidative stress	Lee et al., 2012
Meliara officientă: L., alcohol extract	Lamiaceae	Patients with mild to moderate AD	†Efficacious agains AD	Althondzade et al., 2008a)
Ptychopetalum olacoides Benth. (Marapuama), standardized ethanolestract	Olacaceae	AChE inhibition in hippocampus and striatum of mice	†AChE inhibitory activity	Figueiró et al., 2010
		AChE inhibition in rat and mice frontal cortex, hippocampus and striatum	†AChE inhibitory activity	Siqueira et al., 2003
		Aβ (1-42)-induced mice	LAβ toxicity, LAβ deposits and astrogilosis	Figueiró et al., 2011
Panax notoginarng (Burkill) F.H. Chen ex C.H. Chow, saponins	Araliaceae	AD rat model injected with D-galactose combined with excitatory neurotoxin IBA	Protection of cholinergic neuron	Zhong et al., 2005
Panax ginseng C.A. Mey., [Korean red ginseng (KRG)], total	Araliaceae	Long term application in AD patients	†Cognitive deficit	Heoetal, 2011
powder capsule from mots Panas ginseng C.A. Mey., (KRG), total powder capsule from roots	Araliaceae	AD patients	†Efficacy against AD	Heo et al., 2008
Panax ginseng C.A. Mey., powder	Araliaceae	AD patients	†Cognitive performance	Lee et al., 2008
extracts of ginseng and ginkgo (EGGB)	Araliaceae, Ginkgnaceae	Primary cultured neurons induced by Aβ(1-40)	¿A poptosis, ¿ caspase-3	Congetal, 2011
Polygonum multiflorum Thunh, dissolved in saline	Polygonaceae	Aβ (1–40)-induced rats	†M bochondrial membrane fluidity, † mbochondrial COX activity	Hou et al., 2008
Plaus plauster Alton, pycnogenol (PYC)	Pinaceae	Aβ (25-35) Induced PC12 cells	JROS, JAβ-Induced apoptosis	Pengeral, 2002ab
Solvio officinalis I., alcohol extract	Lamiaceae	Patients with mild to moderate AD	†Efficacious against AD, Lagitation	Althondzade et al., 2003a
Tabe maemontana divaricata (L.) R. Br. ex. Roe m. & Schult., root extract	Apocynaceae	Aβ (25–35)-induced mice; AChE inhibition in mice	†AChE inhibitory activity, † memory	Nakdook et al., 2010
Tabe migemontana divaricata (L.) R. Br., ex. Roe m. & Schult., extract	Apocynaceae	Cerebral contex in rats	Inhibit AChE activity, † neuronal activity	Chattipalion et al., 2007

Ginkgo-Spezialextrakt EGb 761, 240 mg/d

(S3 Leitlinie Demenz, Empfehlungsgrad 0)

Therapieansätze



- 1. Zugelassene Medikamente
- 2. Anti-Amyloid, Anti-Tau Strategien
- 3. Nicht-medikamentöse Substanzen?
- 4. Symptomatische Therapien
 - Lichttherapie
 - Cannabinoide
 - körperliche Aktivität
 - kognitive Stimulation
 - Ernährung

Lichttherapie bei Demenz

n = 42, AD, MMST<24, Pflegeheim; cross-over

Ergebnis: signifikante Verbesserung von Schlafqualität (PSQI), Stimmung (CSDD), Agitation (CMAI) Figueiro et al, Behav Sleep Med 2018

- → Hinweise auf positive Effekte bei AD durch Lichttherapie 460-480nm über den ganzen Tag
- → Effekte stärker bei Heimbewohnern vs. zu Hause (Figueiro et al, 2014 u. 2018 vs Figueiro et al, 2015)
- → Beleuchtung Pflegeeinrichtungen/Krankenhäusern unphysiologisch (Spektrum, Intensität, Rhythmik)
- → Mobile Patienten: Aktivität an der frischen Luft!

Cannabinoide bei Demenz

Pflegeheimbewohner mit AD + Agitation/Aggression, n = 39

6 Wo Nabilon 1-2mg tgl

1 Wo wash-out

6 Wo Placebo

Zielparameter	Instrument	Statistik	Effekt Nabilon
Agitation	CMAI	b= -4 (95%CI: -6.5 bis -1.5, p= 0.003)	Sign. Besserung
Sicherheit	UAW	Sedierung: 47% unter Nabilon, 16% unter Placebo; McNemar's test, p= 0.02	keine schweren UAWs
Neuropsychiatrischer Status	NPI	Agitation/Aggression: b= -1.5 (95%Cl: -2.3 bis -0.6, p=0.001); Total: b= -4.6 (95%Cl: -7.5 bis -1.6, p= 0.001)	Sign. Besserung
Kognition	MMST	b= +1.1 (95%Cl: 0.1 bis 2.0, p= 0.026)	Sign. Besserung
Klinischer Gesamteindruck	CGIC	47% Besserung unter Nabilon vs. 23% Besserung unter Placebo; McNemar's test, p= 0.09	Positiver Trend

Lanctot et al, conference abstract AAIC 2018, P1385

- → pos. Einfluss auf Agitation/ Aggression bei AD durch Nabilon
- → Therapieversuch mit Cannabinoiden bei Versagen Standardtherapie erwägen; insbesondere wenn zusätzlich depressive Stimmungslage, Appetitlosigkeit, Gewichtsabnahme und Schmerz
- → Zugelassen nur bei Chemo-bedingter Emesis; d. h. Antrag bei GKV notwendig

Kognitive Stimulation bei Demenz

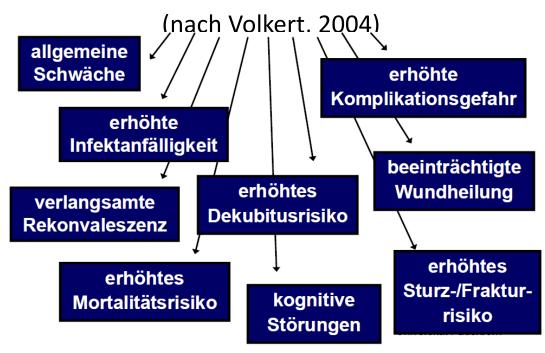
- → Kognitives Training im Stadium der Demenz wird nicht mehr empfohlen
- → hier z. B. kognitive Stimulation, Realitätsorientierung, autobiographische Arbeit (S3 Leitlinie Demenz 2016, Empfehlungsgrad B)

Körperliche Aktivität bei Demenz - Leitlinien

Empfehlung zur Prävention und Intervention:

- ✓ Regelmäßige Bewegung
- ✓ Abwechslungsreiche Aktivitäten jeglicher Intensität
- ✓ In jedem Lebensalter und im präsymptomatischen sowie symptomatischen Stadium
- ✓ Berücksichtigung des Fitnesszustandes und des Verletzungsrisikos

"Empfehlungsgrad B" (S3 Leitlinien Demenz 2016)



Folgen von Mangel- u. Unterernährung: erhöhte Morbidität und Mortalität

→ Mangel- und Unterernährung sollte konsequent und früh entgegengesteuert werden!

Ernährung bei Demenz- Screening

Anamnese/Untersuchung:

Kriterien für das Vorliegen eines klinisch relevanten Ernährungsrisikos

- →unzureichende orale Nahrungszufuhr
- →unbeabsichtigter Gewichtsverlust von 5% in 3 bzw. 10% in 6 Monaten
- → Body Mass Index < 20

Mini Nutritional Assessment MNA®-Short Form (MNA®-SF)

Ernährung bei dementieller Erkrankung - Screening

Mini Nutritional Assessment MNA®- Short Form (MNA®-SF)

Name:			Vorname:	MNA®- Short Form (M
Geschlecht:	Alter (Jahre):	Gewicht (kg):	Größe (m):	Datum:
Füllen Sie den Boge Ergebnis des Screer		zutreffenden Zahlen i	n die Kästchen eintrage	n. Addieren Sie die Zahlen, um da
Screening				
Schwierigkeite 0 = starke Abn 1 = leichte Abr		r Schlucken weniger aufnahme aufnahme	Appetitverlust, Verdau gegessen?	ungsproblemen,
0 = Gewichtsve 1 = nicht bekar	nnt erlust zwischen 1 und			
	oder in einem Stuhl e, sich in der Wohnur e Wohnung			
D Akute Krankh 0 = ja	neit oder psychische 2 = nein	er Stress während de	er letzten 3 Monate?	
0 = schwere D 1 = leichte Der	logische Probleme emenz oder Depress nenz hologischen Problem			

Ernährung bei Demenz- Screening

F1 Body Mass Index (BMI): Körpergewicht (kg) / Körpergröße² (m²)) 0 = BMI < 19 1 = 19 ≤ BMI < 21 2 = 21 ≤ BMI < 23 3 = BMI ≥ 23					
	N BMI-WERT VORLIEGT, BITTE FRAGE F1 MIT FRAGE F2 ERSETZEN. F1 BEREITS BEANTWORTET WURDE, FRAGE F2 BITTE ÜBERSPRINGEN.				
F2 Wadenumfang (WU in cm) 0 = WU < 31					
3 = WU ≥ 31					
Ergebnis des Screen (max. 14 Punkte)	ings				
12-14 Punkte: 8-11 Punkte: 0-7 Punkte:	Normaler Ernährungszustand Risiko für Mangelernährung Mangelernährung				

Welches Körpergewicht ist allgemein anzustreben?

Bewertung des BMI (WHO)

Kategorie	BMI (kg/m²)	Risiko für Begleit- erkrankungen des ÜG
Untergewicht	< 18,5	durchschnittlich
Normalgewicht	18,5 - 24,9	durchschnittlich
Übergewicht	<u>≥</u> 25,0	
Präadipositas	25,0 - 29,9	gering erhöht
Adipositas Grad I	30,0 - 34,9	erhöht
Adipositas Grad II	35,0 - 39,9	hoch
Adipositas Grad III	≥ 40,0	sehr hoch

"Ideal-BMI" in Abhängigkeit vom Alter

Alter in Jahren	BMI (kg/m²)
19 - 24	19 - 24
25 - 34	20 - 25
35 - 44	21 - 25
45 - 54	22 - 27
55 - 64	23 - 28
Über 65	24 - 29

Ernährungsbedarf allgemein

- Wieviel Kalorien braucht der Mensch?
 - basaler Energiebedarf ~ 20-25 kcal/kg KG (bei wenig sonstiger Bewegung daher: 50 kg → 1250 kcal; 75 kg → 1800 kcal)
 - bei Malnutrition(-gefahr): ~ 40 kcal / kg KG
- Wieviel Protein braucht der Mensch?
 - Normal: $\sim 0.8 1.2 \text{ g/kgKG}$
 - bei Malnutrion (-gefahr): ~ 1,5 g / kg KG
- Wieviel Wasser braucht der Mensch?
 - ~ 25 ml / kgKG
 - s. c. Gabe möglich mit NaCl 0,9% oder Ringerlactat

Ernährung bei Demenz

Grundsatz: individuell gestalten!

Ausgangssituation klären

- Palliative Behandlungssituation?
- Wiedergewinnung der Selbstständigkeit nach einer Akuterkrankung?
- Chronische Erkrankung mit Wiedergewinnung von Lebensqualität?
- Compliance von Patienten, Familie, Pflegenden erreichen durch gute Aufklärung
- Kausalfaktoren einer Mangelernährung beseitigen
- Ästhetik: Tischwäsche, Besteck, Portionierung, Anrichten der Speisen soziales Miteinander bei der Nahrungsaufnahme

Ernährung bei Demenz

- Abschätzung des individuellen Kalorienbedarfs; Dokumentation des Verzehrs
- Enteral vor parenteral
- Individuelle Präferenzen "Lieblingsgerichte" erfragen
- Leicht kaubar, gut schluckbar (Anpassung der Konsistenz ggf; bei Gefahr des Verschluckens: Andicken der Speisen)
- Protein: 0,8 g/kgKG pro Tag→ bei älteren eher 1,1 g/kgKG (falls keine chronische Niereninsuffizienz); Verteilung gleichmäßig auf 3 Hauptmahlzeiten
- Hohe Kalorien- und Nährstoffdichte
- Ggf Zwischenmahlzeiten, "Fingerfood"
- Trinksupplemente (400-600 kcal; vorzugsweise Energie- und Eiweiß-reich); zwischen Hauptmahlzeiten mit Abstand von mind. 2 h; Spätmahlzeit um 21 Uhr; leicht gekühlt; Verzehr innerhalb von 30 min (Trinksupplemente führen zur Senkung von Mortalität und Komplikationsraten bei mangelernährten älteren Patienten, Milne et al, Cochrane 2009)
- Vitamin- und Mikronährstoffe immer bei Mangel, va Vit D: 1000-2000 IE/Tag (Rosen et al, NEJM 2011)

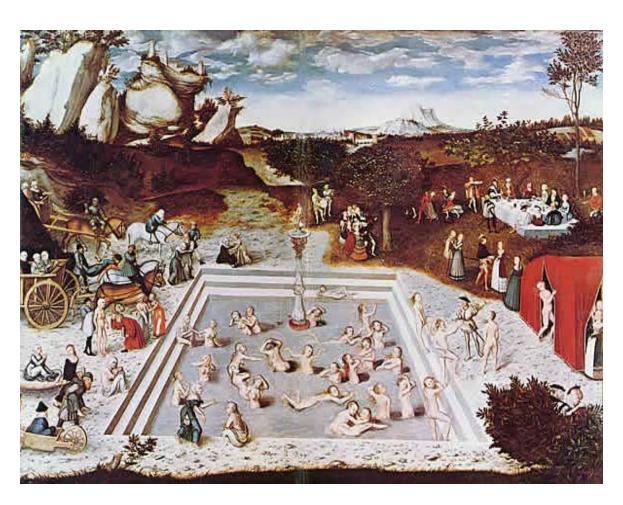
Fazit Ernährung bei Demenz

- → Anamnese/Untersuchung mit Augenmerk auf Ernährungssituation
- → Screening: Mini Nutritional Assessment Short Form
- → Ideal-BMI > 65 J: 24-29
- → Bedarf

Kalorien:

- basaler Energiebedarf ~ 20-25 kcal/kg KG
- bei Malnutrition(-gefahr): ~ 40 kcal / kg K

Protein:


- Normal $\sim 0.8 1.2$ g/kgKG
- bei Malnutrion (-gefahr): ~ 1,5 g / kg KG

Wasser:

- ~ 25 ml / kgKG
- s. c. Gabe möglich mit NaCl 0,9% oder Ringerlactat
- → Hohe Kalorien- und Nährstoffdichte (keine frühzeitige Sättigung)
- → Ggf Zwischenmahlzeiten, "Fingerfood" bei Demenzen
- → Trinksupplemente (400-600 kcal; vorzugsweise Energie- und Eiweiß-reich)

Vielen Dank!

Der Jungbrunnen, Lucas Cranac, 1546